Prof. Raghuveer Parthasarathy
University of Oregon; Fall 2007
Physics 351 - Vibrations and Waves

Programming \#P7: Solution

(a) For the exact (analytic) solution:

The general solution $x(t)=A \sin (\omega t-\varphi)$. The initial $x(t=0)=0$, so $\varphi=0 . v(t=0)=A \omega \cos (\omega t)=v_{0}$, so $A=v_{0} / \omega$. Therefore the particular solution $\mathrm{x}(\mathrm{t})=\left(\mathrm{v}_{0} / \omega\right) \sin (\omega \mathrm{t})$.

Program listing, with "new" lines in bold:

```
% verletSHO_P7.m
% SOLUTION to exercise P7 -- modifying SHO model to have a variable timestep
% and also to plot the exact SHO solution
%
% Raghuveer Parthasarathy
% Oct. 5, 2007
clear all
close all
x(1) = 0.0; % initial position, meters
v(1) = 2.0; % initial velocity, m/s
Deltat = input('Enter Deltat (seconds): '); % time increment, s
x(2) = x(1) + v(1)*Deltat; %We'll explicitly write x(1), even though
                    % it's zero here, in case we ever want to change
                    % our initial conditions. (Otherwise, we might get
                            % confused!)
k = 0.1; % Newtons / meter
m = 1.0; % kilograms
% for exact solution
% General solution x = A sin(wt - phi)
% Initial x(t=0) = 0, so phi = 0. v(t=0) = Aw cos(wt)=v0, so A = v0/w
ta = 0:0.1:100; % time array, seconds
w = sqrt(k/m); % angular freqency (omega), radians / sec
xa = (v(1) / w)*sin(w*ta);
Tfinal = 100.0; % ending time, seconds
t = 0:Deltat:Tfinal; % an array of all the time values -- starts at 0
N = length(t); % "length" gives the number of elements in an array
for j=3:N;
    x(j) = 2*x(j-1) - x(j-2) + Deltat*Deltat*(-1.0*k/m)*x(j-1);
    v(j-1) = (x(j) - x(j-2))/ (2*Deltat);
end
v(N) = (x(N)-x(N-1))/Deltat; % Why? Because v(N)
    % is not set by the above For loop
figure; plot(t, x, 'ko:'); grid on;
xlabel('Time, sec. ');
ylabel('x, meters')
hold on
plot(ta, xa, 'b-');
```

Output ($\Delta \mathrm{t}=0.5 \mathrm{~s}$).
We see that the numerical and analytic solutions are very similar.

(b) See above for the program listing with Deltat being a user-input variable.

Output $(\Delta t=3,6 \mathrm{~s})$.
We see that for larger Δt, the numerical solution is increasingly incorrect. This is because our algorithm, based on a Taylor expansion of $x(t)$, is an increasingly poor approximation to the true "continuous" $\mathrm{x}(\mathrm{t})$.

Mr. K. suggests $\Delta t=0.0001$ seconds. He thinks this is a good idea because, as noted above, smaller Δt yields a better approximation to the true $\mathrm{x}(\mathrm{t})$. However, it requires lots of calculation time - to model 100 seconds with $\Delta t=0.0001$ seconds requires 10^{6} passes through our for-loop, which may be slow.

